Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 71
1.
J Gen Virol ; 105(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38656455

Porcine epidemic diarrhea (PED) is a serious disease in piglets that leads to high mortality. An effective measure that provides higher IgA levels in the intestine and milk is required to decrease losses. Porcine epidemic diarrhea virus (PEDV) was dissolved in calcium alginate (Alg) and combined with chitosan (CS) via electrostatic interactions between cationic chitosan and anionic alginate to create a porous gel (Alg-CS+PEDV). The gel was used to immunize mice orally or in combination with subcutaneous injections of inactivated PEDV vaccine. At 12 and 24 days after immunization, levels of IgA and IgG in Alg-CS+PEDV were higher than with normal PEDV oral administration. At 24 days after immunization, the concentration of IFN-γ in Alg-CS+PEDV was higher than with normal PEDV oral administration. Furthermore, oral administration combining subcutaneous immunization induced higher levels of IgG and IgA than oral administration alone. Our study provides a new method for the preparation and administration of oral vaccines to achieve enhanced mucosal immunity against PEDV.


Alginates , Antibodies, Viral , Chitosan , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Porcine epidemic diarrhea virus , Viral Vaccines , Animals , Administration, Oral , Porcine epidemic diarrhea virus/immunology , Alginates/administration & dosage , Chitosan/administration & dosage , Mice , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Antibodies, Viral/immunology , Immunoglobulin A/immunology , Immunoglobulin G/blood , Swine , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Female , Gels/administration & dosage , Mice, Inbred BALB C , Interferon-gamma/immunology , Glucuronic Acid/administration & dosage , Hexuronic Acids/administration & dosage
3.
Front Biosci (Landmark Ed) ; 29(3): 100, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38538277

BACKGROUND: As a dedifferentiated tumor, small cell endometrial neuroendocrine tumors (NETs) are rare and frequently diagnosed at an advanced stage with a poor prognosis. Current treatment recommendations are often extrapolated from histologically similar tumors in other sites or based on retrospective studies. The exploration for diagnostic and therapeutic markers in small cell NETs is of great significance. METHODS: In this study, we conducted single-cell RNA sequencing on a specimen obtained from a patient diagnosed with small cell endometrial neuroendocrine carcinoma (SCNEC) based on pathology. We revealed the cell map and intratumoral heterogeneity of the cancer cells through data analysis. Further, we validated the function of ISL LIM Homeobox 1 (ISL1) in vitro in an established neuroendocrine cell line. Finally, we examined the association between ISL1 and tumor staging in small cell lung cancer (SCLC) patient samples. RESULTS: We observed the significant upregulation of ISL1 expression in tumor cells that showed high expression of the neuroepithelial markers. Additionally, in vitro cell function experiments demonstrated that the high ISL1 expression group exhibited markedly higher cell proliferation and migration abilities compared to the low expression group. Finally, we showed that the expression level of ISL1 was correlated with SCLC stages. CONCLUSIONS: ISL1 protein in NETs shows promise as a potential biomarker for diagnosis and treatment.


Carcinoma, Neuroendocrine , Neuroendocrine Tumors , Female , Humans , Transcription Factors/genetics , Retrospective Studies , Single-Cell Gene Expression Analysis , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/analysis , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Endometrium/chemistry , Endometrium/metabolism , Endometrium/pathology , Carcinoma, Neuroendocrine/diagnosis , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/therapy
4.
J Gen Virol ; 105(3)2024 03.
Article En | MEDLINE | ID: mdl-38506716

PCV2 belongs to the genus Circovirus in the family Circoviridae, whose genome is replicated by rolling circle replication (RCR). PCV2 Rep is a multifunctional enzyme that performs essential functions at multiple stages of viral replication. Rep is responsible for nicking and ligating single-stranded DNA and unwinding double-stranded DNA (dsDNA). However, the structure and function of the Rep are still poorly understood, which significantly impedes viral replication research. This study successfully resolved the structure of the PCV2 Rep ATPase domain (PRAD) using X-ray crystallography. Homologous structure search revealed that Rep belonged to the superfamily 3 (SF3) helicase, and multiple conserved residues were identified during sequence alignment with SF3 family members. Simultaneously, a hexameric PRAD model was generated for analysing characteristic structures and sites. Mutation of the conserved site and measurement of its activity showed that the hallmark motifs of the SF3 family influenced helicase activity by affecting ATPase activity and ß-hairpin just caused the loss of helicase activity. The structural and functional analyses of the PRAD provide valuable insights for future research on PCV2 replication and antiviral strategies.


Circovirus , Swine , Animals , Circovirus/genetics , Adenosine Triphosphatases/genetics , Crystallography, X-Ray , DNA Helicases/genetics , DNA Replication
5.
J Virol ; 98(3): e0185923, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38411948

Superinfection exclusion (SIE) is a phenomenon in which a preexisting infection prevents a secondary infection. SIE has been described for several flaviviruses, such as West Nile virus vs Nhumirim virus and Dengue virus vs yellow fever virus. Zika virus (ZIKV) is an emerging flavivirus posing threats to human health. The SIE between ZIKV and Japanese encephalitis virus (JEV) is investigated in this study. Our results demonstrate for the first time that JEV inhibits ZIKV infection in both mammalian and mosquito cells, whether co-infects or subsequently infects after ZIKV. The exclusion effect happens at the stage of ZIKV RNA replication. Further studies show that the expression of JEV NS2B protein is sufficient to inhibit the replication of ZIKV, and the outer membrane region of NS2B (46-103 aa) is responsible for this SIE. JEV infection and NS2B expression also inhibit the infection of the vesicular stomatitis virus. In summary, our study characterized a SIE caused by JEV NS2B. This may have potential applications in the prevention and treatment of ZIKV or other RNA viruses.IMPORTANCEThe reemerged Zika virus (ZIKV) has caused severe symptoms in humans and poses a continuous threat to public health. New vaccines or antiviral agents need to be developed to cope with possible future pandemics. In this study, we found that infection of Japanese encephalitis virus (JEV) or expression of NS2B protein well inhibited the replication of ZIKV. It is worth noting that both the P3 strain and vaccine strain SA14-14-2 of JEV exhibited significant inhibitory effects on ZIKV. Additionally, the JEV NS2B protein also had an inhibitory effect on vesicular stomatitis virus infection, suggesting that it may be a broad-spectrum antiviral factor. These findings provide a new way of thinking about the prevention and treatment of ZIKV.


Encephalitis Virus, Japanese , Encephalitis, Japanese , Superinfection , Viral Nonstructural Proteins , Zika Virus Infection , Animals , Humans , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/metabolism , Encephalitis, Japanese/virology , Vesicular Stomatitis , Zika Virus , Viral Nonstructural Proteins/metabolism
6.
Vet Microbiol ; 290: 109977, 2024 Mar.
Article En | MEDLINE | ID: mdl-38185072

Japanese encephalitis virus (JEV) is a zoonotic pathogen belonging to the Flavivirus genus, causing viral encephalitis in humans and reproductive failure in swine. The 3' untranslated region (3'UTR) of JEV contains highly conservative secondary structures required for viral translation, RNA synthesis, and pathogenicity. Identification of host factors interacting with JEV 3'UTR is crucial for elucidating the underlying mechanism of flavivirus replication and pathogenesis. In this study, U2 snRNP auxiliary factor 2 (U2AF2) was identified as a novel cellular protein that interacts with the JEV genomic 3'UTR (the SL-I, SL-II, SL-III, and DB region) via its 1 to 148 amino acids. JEV infection or JEV 3' UTR on its own triggered the nuclear-localized U2AF2 redistributed to the cytoplasm and colocalized with viral replication complex. U2AF2 also interacts with JEV NS3 and NS5 protein, the downregulation of U2AF2 nearly abolished the formation of flavivirus replication vesicles. The production of JEV protein, RNA, and viral titers were all increased by U2AF2 overexpression and decreased by knockdown. U2AF2 also functioned as a pro-viral factor for Zika virus (ZIKV) and West Nile virus (WNV), but not for vesicular stomatitis virus (VSV). Mechanically, U2AF2 facilitated the synthesis of both positive- and negative-strand flavivirus RNA without affecting viral attachment, internalization or release process. Collectively, our work paves the way for developing U2AF2 as a potential flavivirus therapeutic target.


Encephalitis Virus, Japanese , Flavivirus , Swine Diseases , Zika Virus Infection , Zika Virus , Humans , Animals , Swine , Flavivirus/genetics , 3' Untranslated Regions , Ribonucleoprotein, U2 Small Nuclear/genetics , Zika Virus Infection/genetics , Zika Virus Infection/veterinary , Virus Replication/genetics , Cell Line , Zika Virus/genetics , Zika Virus/metabolism , Encephalitis Virus, Japanese/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Splicing Factor U2AF/genetics , Swine Diseases/genetics
7.
J Environ Manage ; 351: 119670, 2024 Feb.
Article En | MEDLINE | ID: mdl-38039588

Lithium iron phosphate (LFP) batteries have gained widespread recognition for their exceptional thermal stability, remarkable cycling performance, non-toxic attributes, and cost-effectiveness. However, the increased adoption of LFP batteries has led to a surge in spent LFP battery disposal. Improper handling of waste LFP batteries could result in adverse consequences, including environmental degradation and the mismanagement of valuable secondary resources. This paper presents a comprehensive examination of waste LFP battery treatment methods, encompassing a holistic analysis of their recycling impact across five dimensions: resources, energy, environment, economy, and society. The recycling of waste LFP batteries is not only crucial for reducing the environmental pollution caused by hazardous components but also enables the valuable components to be efficiently recycled, promoting resource utilization. This, in turn, benefits the sustainable development of the energy industry, contributes to economic gains, stimulates social development, and enhances employment rates. Therefore, the recycling of discarded LFP batteries is both essential and inevitable. In addition, the roles and responsibilities of various stakeholders, including governments, corporations, and communities, in the realm of waste LFP battery recycling are also scrutinized, underscoring their pivotal engagement and collaboration. Notably, this paper concentrates on surveying the current research status and technological advancements within the waste LFP battery lifecycle, and juxtaposes their respective merits and drawbacks, thus furnishing a comprehensive evaluation and foresight for future progress.


Lithium , Recycling , Electric Power Supplies , Iron , Phosphates
8.
Proteins ; 91(8): 1130-1139, 2023 08.
Article En | MEDLINE | ID: mdl-37171131

Porcine circovirus type 2 (PCV2) can cause porcine circovirus-associated disease (PCVAD), which causes significant economic losses to the global pig industry annually. There are no effective antiviral drugs used to control and treat PCV2, and prevention is mainly obtained through vaccination. PCV2 genome replicates through the rolling circle replication (RCR) mechanism involving Rep and Rep', so analyzing the holistic structure of Rep and Rep' will help us better understand the replication process of PCV2. However, there are no reports on the integral structure of Rep' and Rep, which seriously hinders the research of the viral replication. By using the x-ray diffraction method, the structure of the Rep' dimer was resolved by us in this study. Structural analysis revealed that Rep' is a dimer formed by the interaction of the C-terminal domain. The two Rep' form a positively charged groove, which may play an essential role in the viral binding of dsDNA. Together, this study help to understand the replication process of the virus and may also provide new insights into the development of antiviral drugs.


Circovirus , Viral Proteins , Animals , Swine , Viral Proteins/chemistry , Circovirus/genetics , Circovirus/metabolism , Virus Replication/genetics
9.
Oncogene ; 42(4): 322-334, 2023 Jan.
Article En | MEDLINE | ID: mdl-36446891

Aberrant hyperactivation of the Hippo pathway effector YAP/TEAD complex causes tissue overgrowth and tumorigenesis in various cancers, including endometrial cancer (EC). The transcription factor SOX17 (SRY [sex-determining region Y]-box 17) is frequently mutated in EC; however, SOX17 mutations are rare in other cancer types. The molecular mechanisms underlying SOX17 mutation-induced EC tumorigenesis remain poorly understood. Here, we demonstrate that SOX17 serves as a tumor suppressor to restrict the proliferation, migration, invasion, and anchorage-independent growth of EC cells, partly by suppressing the transcriptional outputs of the Hippo-YAP/TEAD pathway. SOX17 binds to TEAD transcription factors through its HMG domain and attenuates the DNA-binding ability of TEAD. SOX17 loss by inactivating mutations leads to the malignant transformation of EC cells, which can be reversed by small-molecule inhibitors of YAP/TEAD or cabozantinib, an FDA-approved drug targeting the YAP/TEAD transcriptional target AXL. Our findings reveal novel molecular mechanisms underlying Hippo-YAP/TEAD pathway-driven EC tumorigenesis, and suggest potential therapeutic strategies targeting the Hippo-YAP/TEAD pathway in SOX17-mutated EC.


Endometrial Neoplasms , YAP-Signaling Proteins , Female , Humans , Transcription Factors/metabolism , Mutation , Endometrial Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism
10.
Chinese Journal of School Health ; (12): 1641-1644, 2023.
Article Zh | WPRIM | ID: wpr-998792

Objective@#To explore the relationship between isochronous substitution and BMI, waist circumference (WC), and body fat rate (FAT) among physical activity (PA), sedentary (SB), and sleep (SLP), so as to provide effective measures for obesity control in adolescents.@*Methods@#A total of 193 adolescents aged 12-15 (90 males and 103 females) was randomly selected, and their height, weight, and BMI were measured using routine testing methods from May to August 2022. The PA, SB and SLP of the participants were measured using a 3D accelerometer (ActiGraph GT3X+).@*Results@#The arithmetic mean value overestimated SLP (40.8%) and SB (39.6%) to some extent, and underestimated LPA (16.1%) and MVPA (3.5%) to some extent. Based on the ISM at 15 min, MVPA was substituted for other activity, BMI Z decreased by 0.17-0.22 units, WC Z decreased by 0.16-0.20 units, and FAT Z decreased by 0.17-0.22 units. The substitution between MVPA and for other activity exhibited significant asymmetry. The effects of MVPA substitutions for SB was the largest, followed by the effects of MVPA substitutions for SLP, and the effects of MVPA substitutions for LPA was the lowest. As MVPA substitutions for other behaviors, it reached its maximum (0.06-0.08 units ) when the MVPA time increased by 5 minutes.@*Conclusions@#MVPA plays an irreplaceable role in the control of adolescent obesity . While reducing SB time, MVPA duration should be increased to ensure that the daily MVPA duration is not less than 55 minutes in order to effectively control obesity.

11.
Chinese Journal of School Health ; (12): 1382-1386, 2023.
Article Zh | WPRIM | ID: wpr-996305

Objective@#An isochronous substitution model was established to explore the association and substitution effect between college students 24 hour activity behavior and physical health, so as to provide specific activity behavior suggestions for college students to improve their physical health.@*Methods@#A stratified random cluster sampling method was used to conduct physical fitness tests and 24 hour activity behavior surveys among 2 794 college students in 12 colleges and universities in Tianjin.Time spent on sedentary behavior(SB), light intensity physical activity(LPA), moderate to vigorous physical activity(MVPA) and sleep(SLP) time. The isochronous method of components was used to explore the relationship between 24 h activity behavior and physical health.@*Results@#Except for 50 m running, MVPA was negatively correlated with BMI Z ( β =-0.62, P <0.05), but positively correlated with other physical fitness indexes ( β =0.34~274.23, P <0.05). LPA was not associated with lung capacity, sitting forward flexion and 50 m running, and negatively correlated with other physical fitness indexes ( β =-14.30- -0.19, P <0.05). SB was negatively correlated with most physical fitness indexes ( β =-11.57- -0.33, P <0.05), but positively correlated with BMI Z ( β =0.45, P < 0.05 ). In addition to lung capacity, SLP was positively correlated with BMI Z , total physical fitness score,1 minute sit-ups, pull ups, 800/1 000 m running, sitting forward flexion, and 50 m running ( β =0.27-11.21, P <0.05), but negatively correlated with long jump ( β =-0.10, P <0.05). Isochronous substitution showed that the adverse effects of 30 min/d SB and LPA substitution of MVPA were much greater than the beneficial effects of MVPA substitution for corresponding behaviors (total physical score: SB, -0.58 vs 0.47 points; LPA, -0.50 vs 0.38 points).@*Conclusion@#MVPA and SLP have been found to have a positive effect on physical fitness among college students. Therefore, in the process of improving the physical health of college students, ensuring adequate sleep, improving MVPA and reducing SB as much as possible may be one of the effective methods.

12.
Front Endocrinol (Lausanne) ; 13: 972339, 2022.
Article En | MEDLINE | ID: mdl-36277715

Objective: The purpose of this study is to investigate the potential of using the tortuosity of branch retinal artery as a more promising indicator for early detection and accurate assessment of diabetic retinopathy (DR). Design and method: The diagnoses, consisting of whether DR or not as well as DR severity, were given by ophthalmologists upon the assessment of those fundus images from 495 diabetic patients. Meanwhile, benefiting from those good contrast and high optical resolution fundus images taken by confocal scanning laser ophthalmoscope, the branch arteries, branch veins, main arteries and main veins in retina can be segmented independently, and the tortuosity values of them were further extracted to investigate their potential correlations with DR genesis and progress based on one-way ANOVA test. Results: For both two comparisons, i.e., between non-DR group and DR group as well as among groups with different DR severity levels, larger tortuosity increments were always observed in retinal arteries and the increments in branch retinal vessels were even larger. Furthermore, it was newly found that branch arterial tortuosity was significantly associated with both DR genesis (p=0.030) and DR progress (p<0.001). Conclusion: Based on this cohort study of 495 diabetic patients without DR and with different DR severity, the branch arterial tortuosity has been found to be more closely associated with DR genesis as well as DR progress. Therefore, the branch arterial tortuosity is expected to be a more direct and specific indicator for early detection of DR as well as accurate assessment of DR severity, which can further guide timely and rational management of DR to prevent from visual impairment or even blindness resulting from DR.


Diabetes Mellitus , Diabetic Retinopathy , Retinal Artery , Humans , Diabetic Retinopathy/etiology , Diabetic Retinopathy/complications , Retinal Artery/diagnostic imaging , Cohort Studies , Retinal Vessels/diagnostic imaging
13.
Front Cell Dev Biol ; 10: 935650, 2022.
Article En | MEDLINE | ID: mdl-35938175

The adenomatous polyposis coli (APC) gene is the chromatin-remodeling-related gene and a typical tumor suppressor. Patients with a high expression of programmed death-ligand 1 (PD-L1) or a high level of tumor mutational burden (TMB) may benefit from immunotherapy in endometrial cancer (EC). This study aimed to demonstrate the role of APC in the diagnosis and immunotherapy treatment of EC. We performed an integrative analysis of a commercial panel including 520 cancer-related genes on 99 tumors from an endometrial cancer cohort in China and DNA-seq data from The Cancer Genome Atlas (TCGA) to identify new gene mutations as endometrial cancer immunotherapy markers. We found that the significant mutant genes that correlated with the PD-L1 expression and TMB were related to the chromatin state and generated a discovery set having 12 mutated genes, including the APC gene, which was identified as a new marker for immunotherapy. Further analysis revealed that tumors with the APC mutation had high TMB, increased expression of PD-L1, and increased lymphocytic infiltration. Next, we verified that APC has an inactive mutation in EC, which may affect the immune response, including PD-L1 expression, microsatellite instability, and lymphocytic infiltrate. Furthermore, patients with the APC mutation had longer overall survival. Our study demonstrates that APC could play an important role in enhancing the response to endometrial cancer treatment, particularly immunotherapy.

14.
Cell Oncol (Dordr) ; 45(5): 861-872, 2022 Oct.
Article En | MEDLINE | ID: mdl-35951287

BACKGROUND: Metastasis is still the major cause of endometrial cancer (EC)-related death. Because of their biological function and regenerative properties, exosomes have been applied to therapeutic regimens. SERPINA5 expression is downregulated in several tumors and linked to tumor cell migration and invasion. However, the expression and biological functions of SERPINA5 in EC remain unclear. METHODS: The levels of SERPINA5 in plasma exosomes were determined with ELISAs. SERPINA5 expression in EC and its relationship with survival outcomes were analyzed using the TCGA database and clinical EC tissue samples. The effect of SERPINA5 overexpression or exosomal SERPINA5 on EC metastasis was examined by cell migration and invasion assays in vitro. Mechanistically, overexpression of SERPINA5 or high exosomal SERPINA5 levels mediated the regulation of the integrin ß1/FAK signaling pathway in EC cell lines. The therapeutic effect of exosomal SERPINA5 was determined with xenograft models. RESULTS: This study revealed that the level of exosomal SERPINA5 was increased in the circulating plasma of EC patients. In addition, the expression of SERPINA5 was decreased in EC patients with distant metastasis, and low expression of SERPINA5 indicated worse survival. In addition, SERPINA5 was elevated in normal tissues adjacent to EC tumors. Moreover, overexpression of SERPINA5 inhibited metastatic potential of EC cell lines in vitro. Furthermore, SERPINA5 loaded on secreted exosomes reduced the metastatic ability of EC cells. Notably, overexpression of SERPINA5 or high exosomal SERPINA5 levels suppressed EC metastatic potential by suppressing integrin ß1/FAK signaling pathway activation. Finally, exosomal SERPINA5 impeded tumor growth and metastasis in xenograft models. CONCLUSIONS: Our findings revealed that a low level of SERPINA5 expression indicated poor survival outcomes in EC and that exogenous SERPINA5 loading of exosomes may be a novel therapeutic strategy for metastatic EC.


Endometrial Neoplasms , Exosomes , MicroRNAs , Female , Humans , Exosomes/metabolism , Integrin beta1 , Cell Line, Tumor , Cell Movement , Signal Transduction , Endometrial Neoplasms/metabolism , MicroRNAs/metabolism , Cell Proliferation , Protein C Inhibitor/metabolism
15.
Antiviral Res ; 199: 105255, 2022 03.
Article En | MEDLINE | ID: mdl-35143853

Zika virus (ZIKV) has rapid become a global threat, but no ZIKV-specific vaccines or drugs are currently available. In this study, inhibitors of ZIKV NS2B-NS3 protease were screened from a library containing 4,452 compound fragments. One of the compounds, 6-bromo-1,2-naphthalenedione, exhibited high specific inhibition against ZIKV NS2B-NS3 protease, but had no inhibitory effects against other viral proteases. A microscale thermophoresis (MST) assay confirmed that the compound bound to ZIKV NS2B-NS3 protein with a binding constant (Kd) of 12.26 µM. Indirect immunofluorescence assays, Western blots, and plaque assays indicated that the compound inhibited virus replication in cells. Virus titer was reduced by more than 75% when the compound was present at 1 µM. A time-of-addition assay showed that inhibition occurred at the virus replication stage, but not at the adsorption or invasion stages. The half cytotoxicity concentration (CC50) of the compound on HeLa, Vero, and BHK-21 cells were 445.44 µM, 123.87 µM, and 123.64 µM, respectively. In vivo tests using infected AG129 mice demonstrated that treatment with the compound reduced mortality by up to 60%. Mice treated with the compound showed a reduction in histopathological lesions in brain, testis, and ovary. Viral RNA, IL-1ß, and IL-6 mRNA levels decreased significantly in these tissues. In summary, this study has identified a small compound with high and specific inhibitory effects on ZIKV. The compound can be used as a therapeutic agent and is also an ideal starting point for drug optimization.


Zika Virus Infection , Zika Virus , Animals , Antiviral Agents/therapeutic use , Female , Mice , Peptide Hydrolases , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/genetics , Zika Virus Infection/drug therapy
16.
Microbiol Spectr ; 9(3): e0166121, 2021 12 22.
Article En | MEDLINE | ID: mdl-34756071

Type I interferon (IFN-I) is a key component of the host innate immune system. To establish efficient replication, viruses have developed several strategies to escape from the host IFN response. Japanese encephalitis virus (JEV) NS1', a larger NS1-related protein, is known to inhibit the mitochondrial antiviral signaling (MAVS)-mediated IFN-ß induction by increasing the binding of transcription factors (CREB and c-Rel) to the microRNA 22 (miRNA-22) promoter. However, the mechanism by which NS1' induces the recruitment of CREB and c-Rel onto the miRNA-22 promoter is unknown. Here, we found that JEV NS1' protein interacts with the host cyclin-dependent kinase 1 (CDK1) protein. Mechanistically, NS1' interrupts the CDC25C phosphatase-mediated dephosphorylation of CDK1, which prolongs the phosphorylation status of CDK1 and leads to the inhibition of MAVS-mediated IFN-ß induction. Furthermore, the CREB phosphorylation and c-Rel activation through the IκBα phosphorylation were observed to be enhanced upon the augmentation of CDK1 phosphorylation by NS1'. The abrogation of CDK1 activity by a small-molecule inhibitor significantly suppressed the JEV replication in vitro and in vivo. Moreover, the administration of CDK1 inhibitor protected the wild-type mice from JEV-induced lethality but showed no effect on the MAVS-/- mice challenged with JEV. In conclusion, our study provides new insight into the mechanism of JEV immune evasion, which may lead to the development of novel therapeutic options to treat JEV infection. IMPORTANCE Japanese encephalitis virus (JEV) is the main cause of acute human encephalitis in Asia. The unavailability of specific treatment for Japanese encephalitis demands a better understanding of the basic cellular mechanisms that contribute to the onset of disease. The present study identifies a novel interaction between the JEV NS1' protein and the cellular CDK1 protein, which facilitates the JEV replication by dampening the cellular antiviral response. This study sheds light on a novel mechanism of JEV replication, and thus our findings could be employed for developing new therapies against JEV infection.


CDC2 Protein Kinase/metabolism , Encephalitis Virus, Japanese/immunology , Immune Evasion/immunology , Interferon-beta/immunology , Viral Nonstructural Proteins/metabolism , Virus Replication/physiology , Animals , CDC2 Protein Kinase/antagonists & inhibitors , CREB-Binding Protein/metabolism , Cell Line, Tumor , Cricetinae , Encephalitis, Japanese/immunology , HeLa Cells , Humans , Immunity, Innate/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , NF-KappaB Inhibitor alpha/metabolism , Phosphorylation/genetics , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-rel/metabolism , cdc25 Phosphatases/metabolism
17.
Front Cell Infect Microbiol ; 11: 748558, 2021.
Article En | MEDLINE | ID: mdl-34621695

The gut-uterus axis plays a pivotal role in the pathogenesis of endometrial cancer (EC). However, the correlations between the endometrial microbiome and endometrial tumor transcriptome in patients with EC and the impact of the endometrial microbiota on hematological indicators have not been thoroughly clarified. In this prospective study, endometrial tissue samples collected from EC patients (n = 30) and healthy volunteers (n = 10) were subjected to 16S rRNA sequencing of the microbiome. The 30 paired tumor and adjacent nontumor endometrial tissues from the EC group were subjected to RNAseq. We found that Pelomonas and Prevotella were enriched in the EC group with a high tumor burden. By integrating the microbiome and hematological indicators, a correlation was observed between Prevotella and elevated serum D-dimer (DD) and fibrin degradation products (FDPs). Further transcriptome analysis identified 8 robust associations between Prevotella and fibrin degradation-related genes expressed within ECs. Finally, the microbial marker of Prevotella along with DD and FDPs showed a high potential to predict the onset of EC (AUC = 0.86). Our results suggest that the increasing abundance of Prevotella in endometrial tissue combined with high serum DD and FDP contents may be important factors associated with tumor burden. The microbe-associated transcripts of host tumors can partly explain how Prevotella promotes DD and FDPs.


Endometrial Neoplasms , Microbiota , Bacteria/genetics , Endometrial Neoplasms/genetics , Female , Fibrin , Humans , Prospective Studies , RNA, Ribosomal, 16S/genetics , Transcriptome
18.
Onco Targets Ther ; 14: 4485-4497, 2021.
Article En | MEDLINE | ID: mdl-34429613

PURPOSE: Microsatellite instability (MSI) and mismatch repair deficiency (dMMR) are important biomarkers for predicting responses to immune checkpoint inhibitor (ICI) therapies. Although PCR-based tests for high MSI (MSI-H) and dMMR yield highly concordant results in endometrial cancer (EC), it is unclear whether this is true for MSI-H and MMR detected by next-generation sequencing (NGS) and immunohistochemistry (IHC), respectively. This study investigated whether EC with MSI-H identified by NGS and dMMR identified by IHC have similar tumor immune microenvironments. PATIENTS AND METHODS: EC tissue and corresponding peripheral blood lymphocyte samples were collected from 99 randomly selected patients. MSI status and tumor mutation burden (TMB) were examined by NGS. MMR protein and programmed death ligand (PD-L)1 expression and tumor-infiltrating lymphocyte (TIL) abundance were evaluated by IHC. RESULTS: Of the 99 EC samples, 29 (29%) had dMMR by IHC, while 18 (18%) had MSI-H by NGS. MSI and MMR status identified by the two methods were discordant in the 99 EC patients, and 2/18 NGS-identified MSI-H patients (11%) retained MMR protein expression. MSI-H and dMMR endometrial tumors had similar numbers of cluster of differentiation (CD)3+ TILs (T cells) and CD8+ TILs (cytotoxic T cells) in the tumor center and periphery, which differed from those in microsatellite stable (MSS) and mismatch repair-proficient (pMMR) EC; they also showed similar TMB, PD-L1 expression, and TIL counts with higher TMB and PD-L1 expression than MSS and pMMR ECs. The abundance of CD3+ and CD8+ TILs was increased in PD-L1-positive EC. CONCLUSION: NGS-identified MSI status and IHC-identified MMR status were inconsistent in EC, and 11% of NGS-identified MSI-H tumors retained MMR protein expression. Conversely, MSI and MMR status determined by the two methods provided similar data on TMB, PD-L1 expression, and TIL abundance, which can guide treatment decisions with ICIs.

19.
Front Immunol ; 12: 604222, 2021.
Article En | MEDLINE | ID: mdl-34040601

Background: Antiphospholipid syndrome (APS) is a systemic autoimmune disease that can lead to thrombosis and/or pregnancy complications. Exosomes, membrane-encapsulated vesicles that are released into the extracellular environment by many types of cells, can carry signals to recipient cells to affect angiogenesis, apoptosis, and inflammation. There is increasing evidence suggesting that exosomes play critical roles in pregnancy. However, the contribution of exosomes to APS is still unknown. Methods: Peripheral plasma was collected from healthy early pregnancy patients (NC-exos) and early pregnancy patients with APS (APS-exos) for exosome extraction and characterization. The effect of exosomes from different sources on pregnancy outcomes was determined by establishing a mouse pregnancy model. Following the coincubation of exosomes and human umbilical vein endothelial cells (HUVECs), functional tests examined the features of APS-exos. The APS-exos and NC-exos were analyzed by quantitative proteomics of whole protein tandem mass tag (TMT) markers to explore the different compositions and identify key proteins. After incubation with HUVECs, functional tests investigated the characteristics of key exosomal proteins. Western blot analysis was used to identify the key pathways. Results: In the mouse model, APS-exos caused an APS-like birth outcome. In vitro experiments showed that APS-exos inhibited the migration and tube formation of HUVECs. Quantitative proteomics analysis identified 27 upregulated proteins and 9 downregulated proteins in APS-exos versus NC-exos. We hypothesized that apolipoprotein H (APOH) may be a core protein, and the analysis of clinical samples was consistent with finding from the proteomic TMT analysis. APOH-exos led to APS-like birth outcomes. APOH-exos directly enter HUVECs and may play a role through the phospho-extracellular signal-regulated kinase pathway. Conclusions: Our study suggests that both APS-exos and APOH-exos impair vascular development and lead to pregnancy complications. APOH-exos may be key actors in the pathogenesis of APS. This study provides new insights into the pathogenesis of APS and potential new targets for therapeutic intervention.


Antiphospholipid Syndrome/etiology , Antiphospholipid Syndrome/metabolism , Disease Susceptibility , Exosomes/metabolism , beta 2-Glycoprotein I/metabolism , Animals , Antiphospholipid Syndrome/pathology , Biological Transport , Biomarkers , Cells, Cultured , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mice , Phenotype , Phosphorylation , Pregnancy , Proteome , Proteomics/methods
20.
Oncogene ; 40(3): 633-646, 2021 01.
Article En | MEDLINE | ID: mdl-33208911

Endometrial cancer (EC) is a common gynaecological cancer worldwide. Exosomes, secreted by living cells and detected in various body fluids, can exchange information between organs and compartments to affect cellular functions, such as proliferation, apoptosis, migration and angiogenesis. We hypothesise that plasma exosomal contents are altered during cancer progression and promote cancer growth and angiogenesis by delivering biomolecules to cancer and vascular endothelial cells. In this study, circulating exosomes derived from EC patients and age-matched healthy people were acquired by commercial kits. Cell counting kit-8, Transwell and Matrigel tube formation assays showed that circulating exosomes from EC patients promote EC cell growth and human umbilical vein endothelial cell (HUVEC) angiogenesis. Next, proteomic analysis and ELISA revealed that plasma exosomal lectin galactoside-binding soluble 3 binding protein (LGALS3BP) increased during EC progression. Moreover, to explore the function of exosomal LGALS3BP, we acquired exosomes containing high levels of LGALS3BP by overexpressing LGALS3BP in human embryonic kidney 293 cells, and we demonstrated that highly contained exosomal LGALS3BP contributed to EC cell proliferation and migration and HUVEC functions via the activation of the PI3K/AKT/VEGFA signalling pathway both in vitro and in vivo. Finally, high LGALS3BP expression was observed in human EC tissue, which indicated a poor prognosis. In addition, immunohistochemical analysis of human EC tissues revealed that LGALS3BP expression was correlated with VEGFA expression and blood vessel density. Hence, we proposed that plasma exosomes containing LGALS3BP contributed to EC growth and angiogenesis during EC progression, which also provided a novel perspective on EC diagnosis and prognosis.


Antigens, Neoplasm/blood , Biomarkers, Tumor/blood , Endometrial Neoplasms/blood , Exosomes/metabolism , Neoplasm Proteins/blood , Signal Transduction , Endometrial Neoplasms/pathology , Female , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans
...